Aircraft landing control design based on artificial life and CMACs

نویسندگان

  • Jih-Gau Juang
  • Cheng-Yen Yu
  • Chung-Ju Cheng
چکیده

This paper presents the use of different artificial life-based optimization algorithms and cerebellar model articulation controllers (CMACs) in aircraft automatic landing control. The proposed intelligent control system can act as an experienced pilot and guide the aircraft landed safely in wind disturbance condition. Lyapunov theory is applied to obtain adaptive learning rule and stability analysis is also provided. The proposed controllers have better performance than conventional controller.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automatic Landing Guidance Systems and Design of an Optimal Landing Control System

Guidance and control of aircraft in the landing phase imposes extra pilot work loads, hence application of automatic landing control systems is of great importance. In this study automatic landing control systems are introduced and an optimal landing control system is designed. The control system performance criteria are based on minimum control effort. The designed system is simulated for a tr...

متن کامل

Automatic Landing Guidance Systems and Design of an Optimal Landing Control System

Guidance and control of aircraft in the landing phase imposes extra pilot work loads, hence application of automatic landing control systems is of great importance. In this study automatic landing control systems are introduced and an optimal landing control system is designed. The control system performance criteria are based on minimum control effort. The designed system is simulated for a tr...

متن کامل

Oscillation Control of Aircraft Shock Absorber Subsystem Using Intelligent Active Performance and Optimized Classical Techniques Under Sine Wave Runway Excitation (TECHNICAL NOTE)

This paper describes third aircraft model with 2 degrees of freedom. The aim of this study is to develop a mathematical model for investigation of adoptable landing gear vibration behavior and to design Proportional Integration Derivative (PID) classical techniques for control of active hydraulic nonlinear actuator. The parameters of controller and suspension system are adjusted according to be...

متن کامل

Optimized Fuzzy Logic for Nonlinear Vibration Control of Aircraft Semi-active Shock Absorber with Input Constraint (TECHNICAL NOTE)

Landing impact and runway unevenness have proximate consequence on performance of landing gear system and conduce to discomfort of passengers and reduction of the pilot’s capability to control aircraft. Finally, vibrations caused by them result in structure fatigue. Fuzzy logic controller is used frequently in different applications because of simplicity in design and implementation. In the pre...

متن کامل

Numerical Survey of Vibrational Model for Third Aircraft based on HR Suspension System Actuator Using Two Bee Algorithm Objective Functions

This research explains airplane model with two vertical vibrations for airframe and landing gear system. The purpose of this work is to advance vibrational model for study of adjustable vibration absorber and to plan Proportional-Integration-Derivative approach for adapting semi active control force. The coefficients of this method are modified as stated by Bee multiobjective optimization using...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013